

Creating User-Defined

Web Pages for

S7-1200/S7-1500

SIMATIC STEP 7 (TIA Portal V16)
S7-1200 / S7-1500

https://support.industry.siemens.com/cs/ww/en/view/68011496

Siemens

Industry

Online

Support

https://support.industry.siemens.com/cs/ww/en/view/68011496

Legal information

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 2

©
 S

ie
m

e
n
s
 2

0
2
0
 A

ll
ri
g
h
ts

 r
e
s
e
rv

e
d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are
a free service by Siemens AG and/or a subsidiary of Siemens AG (“Siemens”). They are non-
binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.
Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without
limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens
against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.
By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.
The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with industrial security functions that support the secure
operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the Internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.
For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.
Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
at: https://www.siemens.com/industrialsecurity.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity

Table of Contents

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 3

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Table of Contents
Legal information ... 2

1 Preface .. 5

2 Automation Task .. 6

3 Automation Solution .. 7

3.1 Overview of the Overall Solution .. 7
3.2 Advantages and Possible Uses of Web Server Applications 8
3.3 Creating User-Defined Web Pages .. 9
3.4 Structure of the Application Example.. 10
3.5 Hardware and Software Components Used 11

4 Fundamentals of Standard Web Pages ... 13

5 Function Mechanisms of this Application Example 14

5.1 Functional Principle of the S7 Program .. 14
5.1.1 Startup (OB100) .. 16
5.1.2 Main (OB1) .. 16
5.1.3 TankSimu (FB1) .. 16
5.1.4 DataToString (FC24) ... 18
5.2 Functionality of the HTML File Without JavaScript 19
5.2.1 AWP Commands ... 19
5.2.2 Outputting CPU Variables .. 19
5.2.3 Outputting Texts via Enumerations .. 20
5.2.4 Setting Variables in the CPU with Value and Button 20
5.2.5 Setting Variables in the CPU via Button Only 21
5.3 Functionality of the HTML File with JavaScript 22
5.3.1 Outputting CPU Variables .. 22
5.3.2 Outputting Colored Texts via Arrays ... 25
5.3.3 Outputting Graphics via Arrays .. 25
5.3.4 Setting Variables in the CPU with Value and Button 26
5.3.5 Setting Variables in the CPU via Button Only 27
5.4 How the HTML File Works with Web API (S7-1500) 29
5.4.1 Logging into Web API .. 29
5.4.2 Transmitting the Token and IP Address When Changing Web

Pages .. 31
5.4.3 Outputting CPU Variables .. 31
5.4.4 Outputting Colored Texts via Arrays ... 32
5.4.5 Outputting Graphics via Arrays .. 33
5.4.6 Setting Variables in the CPU with Value and Button 34
5.4.7 Setting Variables in the CPU via Button Only 35

6 Project Planning and Configuration .. 37

6.1 Procedure for Creating a Web Page .. 37
6.2 Configuring the Hardware .. 37
6.3 Creating Variables in the Variable Table or DB 40
6.4 Creating the HTML files ... 40
6.5 Web Server Settings and Generating Data Blocks 41
6.6 Creating, Compiling, and Loading the S7 Program 43

7 Installation .. 44

7.1 Installing Hardware and Software... 44
7.2 Installation of the Application Example ... 45

8 Operating the Application Example ... 46

8.1 Opening User-Defined Pages .. 46

Table of Contents

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 4

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

8.2 Operating the “Web Page Standard” .. 48
8.3 Operating the “Web Page Optimized”... 51
8.4 Operating “Web API (S7-1500)” ... 51

9 Appendix... 52

9.1 Service and support ... 52
9.2 Links and literature .. 53
9.3 Change documentation .. 54

1 Preface

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 5

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

1 Preface

Aim of the application example

This application example shows you how you can easily and quickly create your
own user-defined web pages, or “user-defined pages”, for the S7-1200/1500.

Main contents of the application example

The following main points will be discussed in this application example:

• Fundamentals for user-defined pages.

• Creating user-defined web pages.

• Configuring the web server with user-defined web pages.

Advantages

• Integrated Web server
The standard web pages for easy viewing of service and diagnostics
information are activated with one click. Additionally, individually created, user-
defined web pages can be generated.

• Location-independent
The web page can be called up world-wide via a standard internet browser.

• Application example
Universal use of the application example for all control systems.

Uses

• No additional hardware and software required.

• Access to the web server is possible over long distances and mobile
communication devices, e.g. tablet PC, smartphone, etc.

• Reduced working hours through simple enabling of the web server.

• Time saving in planning and implementing your automation solution through
simple adjustment of the application example on hand.

Note The application example and the web server should not and cannot replace an
HMI system.

2 Automation Task

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 6

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

2 Automation Task

Overview of the automation task

Modern automation technology increasingly integrates internet technologies which
together with integrated Ethernet-based communication enable, for example, direct
access to the system via the intranet.

During the test and commissioning phase, the commissioning engineer wants to
have flexible access to the CPU; individual data is to be visualized during operation
for diagnostic purposes.

For access mechanisms via the internet or intranet, it is reasonable to use already
existing standards, such as HTTP technology or standard web browsers, and
common “languages” such as HTML (Hypertext Markup Language) or JavaScript.

Figure 2-1 Overview of the automation task

PROFINET

Industrial Ethernet

Control 1

Laptop

Remote access

Control 2

Control 3

<html>

…

Web page 1 Web page 2 Web page 3

<html>

…

<html>

…

Smartphone

Tablet

Requirements for the automation task

• Access the CPU with standard hardware and standard mechanisms via the
Industrial Ethernet. Additional hardware and software are not required.

• Access the CPU that is individually related to the system and also
visualized, if required. Each CPU has its own individual web page.

• Operating personnel without any automation knowledge are also provided
simple access to the CPU.

3 Automation Solution

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 7

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

3 Automation Solution

3.1 Overview of the Overall Solution

Diagram

SIMATIC CPUs with PROFINET interfaces provide the opportunity to access CPU
variables with the help of web pages provided by the system.

Access the integrated web server of the CPU via a web browser.

The web server contains standard web pages, such as the Start Page,
identification, diagnostic buffer, module status, messages, communication,
topology, and file browser.

In addition to the standard web pages, you can also design and call the web pages
individually for your application case.

To create your user-defined web page, you can use tools such as Microsoft
Expression Web, Notepad++, etc.

For designing your web page, you can use all options provided to you by HTML,
CSS (Cascading Style Sheets), and JavaScript.

In addition, there are Automation Web Programming (AWP) commands for directed
communication with the CPU.

The following Figure gives an overview of the implemented solution.

Figure 3-1 Overview of the overall solution

PROFINET

Industrial
Ethernet

CPU 1511-1 PN
as Webserver

STEP7
(TIA-Portal)

HTML-Editor

- HTML file

Client with
Webbrowser

Web page

Request

S7 program
blocks

- ...
HTML file

In this application example, the CPU simulates a tank which can be controlled
through the web page.

The application example was implemented with three different solution possibilities
(examples):

• Web page standard: HTML without JavaScript

• Web page optimized: HTML with JavaScript

• Web API (only S7-1500): HTML with Web API and JavaScript

3 Automation Solution

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 8

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

3.2 Advantages and Possible Uses of Web Server
Applications

By having access options through various web browsers, control data can be
displayed, and controlled to a limited degree, by any computer or web-enabled
devices without additional software installation.

Another advantage is being able to use the entire network infrastructure of a plant
without any additional hardware components. This means that the corresponding
controls can be accessed at any point in the plant where network access is
available.

Evaluation, diagnostics, and controlling of the controllers can also be performed
over large distances using mobile communication devices such as tablet PCs or
smartphones. This also requires you, however, to take corresponding precautions
to protect your system. Please observe our security notes in the Chapter “Warranty
and Liability” in this context.

WARNING

No safety-relevant functions should be realized via the web server
functionality due to the missing time deterministic of web applications!

3 Automation Solution

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 9

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

3.3 Creating User-Defined Web Pages

The following steps describe the procedure for creating user-defined pages.

Figure 3-2 Procedure at a glance

Table 3-1

No. Command

1. With an HTML editor, you can create the HTML file for the user-defined web page.

(A standard editor such as Notepad/Notepad++ is sufficient for this.)

2. The web application can be composed of different source files,
e.g.: *.html, *.gif, *.js, etc.

3. With SIMATIC STEP 7 (TIA Portal), the HTML files with images, etc. are stored in
data blocks. Call the WWW command in the S7 program.

4. Transfer all blocks onto the CPU.

5. Open the web page of the CPU via a web browser.

Accessing the web server of the CPU can be accomplished irrespective of the
configuration computer.

In other words, every output device with access to the PN interface of the CPU can
display the web page.

You can find detailed explanations about creating a web page and programming in
SIMATIC STEP 7 (TIA Portal) in Chapter 5.3.

3 Automation Solution

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 10

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Delimitation

This application example is an introduction to user-defined web pages for
beginners. Simple methods are shown for accessing the web page of a CPU with
HTML and SIMATIC STEP 7 (TIA Portal).

This application example does not include a complete description of HTML.

You can find more information about HTML and JavaScript in Chapter 9.2.

3.4 Structure of the Application Example

This application example was implemented with a CPU 1511-1 PN and a
CPU 1214C DC/DC/DC. A PC is connected via the PROFINET interface. The PC
serves for the creation of the S7 program and the HTML files, as well as for
displaying the web pages in a web browser.

Shown are all steps necessary to create a web page and to subsequently call it via
the CPU.

Content of the application example

You will find the following in-depth content in the application example:

• Configuration of the web server for a CPU with PN interface

• Creation of a user-defined web page for the CPU with the following functions:

– Displaying CPU variables.

– Graphic display of CPU variables.

– Setting of CPU variables.

– Displaying of texts which are linked with CPU variables.

– Display of images that are linked to variables of the CPU.

– Going to web pages with links in the navigation bar.

– Cyclic update of the web pages with HTML.

– Cyclic update of the web pages with JavaScript.

• Particularities in the S7 program creation:

– Providing variables for the web page.

– Further processing of variables from the web page in the S7 program.

3 Automation Solution

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 11

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

3.5 Hardware and Software Components Used

The application example was created with the following components.

Hardware components

Note For this application example, the current firmware version of the CPU is required.
Depending on the CPU type, the following entries contain links to the
corresponding downloads:

• S7-1500: http://support.automation.siemens.com/WW/view/en/56926947/133200

• S7-1200: http://support.automation.siemens.com/WW/view/en/104546617/133200

Table 3-2

Components Qty. Item number Note

CPU 1511-1 PN

or

CPU 1214C DC/DC/DC

1 6ES7511-1AK02-0AB0

6ES7214-1AG40-0XB0

FW 2.8

FW 4.4

Optional when using

S7-1500: CP 1543-1

1 6GK7 543-1AX00-0XE0 PROFINET CP with firewall
functionality for protection
against unauthorized
network access

Software components

Table 3-3

Components Qty. Item number Note

SIMATIC STEP 7
Professional V16

1 6ES7822-1AA06-0YE5 -

Software tool for
creating HTML files,
e.g. Notepad++

1 - -

Web browser, e.g.
Google Chrome,
Mozilla Firefox1)

1 - The application example is
optimized for Google
Chrome.

1) The following web browsers were explicitly tested for communication with the

CPU:

• Google Chrome (Version 80)

• Mozilla Firefox (Version 73.0)

• Internet Explorer (Version 11)

Note This application example is optimized for Google Chrome and Firefox.

If you are using Internet Explorer, deactivate “Compatibility View” in its settings
(“Extras” menu).

If using other browsers, adjustments may have to be made.

http://support.automation.siemens.com/WW/view/en/56926947/133200
http://support.automation.siemens.com/WW/view/en/104546617/133200

3 Automation Solution

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 12

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Sample files and projects

The following list contains all files and projects used in this example.

Table 3-4

Components Comments

68011496_S7-1200_1500_Webserver_CODE_v4.zip The zip file contains the
STEP 7 project with the
corresponding HTML files. The
HTML files with the associated
files are located in the project
directory under
“\UserFiles\Webpages”.

68011496_S7-1200_1500_Webserver_DOC_v4_de.pdf This document.

4 Fundamentals of Standard Web Pages

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 13

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

4 Fundamentals of Standard Web Pages

Requirements

In SIMATIC STEP 7 (TIA Portal), the following settings are required in the
properties of the CPU:

• The web server must be activated.

• If you require safe access to the standard web pages, enable the “Permit
access only with HTTPS” check box.
The Web API only supports the “HTTPS” transmission protocol.

Access via HTTP or HTTPS

With the URL “http://ww.xx.yy.zz” or “https://ww.xx.yy.zz”, you get access to the
standard web pages. Here, “ww.xx.yy.zz” corresponds to the IP address of the
SIMATIC S7-1200/S7-1500 CPU.

HTTPS is used to encrypt and authenticate the communication between browser
and web server. If the check box “Only allow access via HTTPS” is checked, the
web pages can only be accessed via HTTPS.

Log in

In the user list, a default user named “Everybody” has been created with
administrative access pre-assigned. Registration on the controller’s web pages is
therefore not necessary.

Note For more information on user handling and the integration of the login window
into the user-defined pages, refer to “Web Server Examples for
SIMATIC S7-1200/S7-1500”.

These examples can be downloaded from the same web page as this application
example.

Standard web pages of SIMATIC S7-1500/S7-1200

The web server of SIMATIC S7-1500/S7-1200 already offers a lot of information
about the respective CPU via integrated standard web pages.

You can find a detailed description of the setup of the standard web pages in the
application description 59193560.

http://support.automation.siemens.com/WW/view/en/59193560

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 14

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5 Function Mechanisms of this Application
Example
Using a tank system as an example, three different methods are shown for
exchanging data with the web server of the CPU and a web browser. The three
options can be called up individually via the HTML file “Startpage.html”.

You can find the files for the three different options in the project directory under
“Userfiles\Webpages” in the following folders:

• WebpageStandard: HTML without JavaScript

• WebpageOptimized: HTML with JavaScript

• Web API: HTML with Web API and JavaScript (only possible via HTTPS)

The individual examples each have a Start Page, an Overview Page, and a page
for displaying measurement data. The three examples are loaded all at once onto
the CPU. The examples are structured so that they may also be loaded onto the
CPU individually.

For the creation of the HTML pages, only fixed values are used for the position and
size of the elements. This prevents the elements from moving and overlapping
when the browser window is made smaller.

5.1 Functional Principle of the S7 Program

The S7 program of this application example only serves to illustrate individual
functionalities of SIMATIC STEP 7 (TIA Portal).

The following Figure shows the call structure in the S7 program.

Figure 5-1: S7 program call structure

Main

Startup

TankSimu

DataToString

LGF_DTLto

String

DataBuffer

Web2Plc

LGF_Frequency

WebString

Append_Bool

WebString

Append_Word

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 15

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The following variables are used in the data blocks “Web2Plc” and “DataBuffer”:

Figure 5-2: DB “Web2Plc”

Figure 5-3: DB “DataBuffer”

Figure 5-4: PLC data type “typeDataStruct”

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 16

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5.1.1 Startup (OB100)

In OB “Startup” (OB100), a start value for the flow rate “Web2Plc.flowrate” and the
limit values of the variables are stored.

5.1.2 Main (OB1)

In OB “Main” (OB1), the status of DB333 is polled cyclically to be able to recognize
a request from the web browser. The request is made because a variable changed
by the user is to be transferred from the web browser to the web server.

Synchronizing user-defined pages

The “WWW” (SFC99) command initializes the web server of the CPU. The error
information is output via “RET_VAL”.

Calling the tank simulation

To ensure that filling or emptying of the tank does not happen too quickly, the
“TankSimu” function block is called in OB1 only once per second.

Querying the “Start” or “Stop” and “Reset” buttons

The status of the “Start” and “Stop” buttons are polled by the web page. If one of
the buttons is pressed, the state is stored in the PLC variable “Web2Plc.startStop”.

Additionally, the status of the “Reset” button is queried.

Querying the buttons for the “OpenValve” or “CloseValve” valve position

The status of the “OpenValve” (tank deflates) and “CloseValve” (tank closed)
buttons is polled by the web page.

If one of the buttons is pressed, the state is stored in the PLC variable
“Web2Plc.statusValveCPU”.

5.1.3 TankSimu (FB1)

How the FB “TankSimu” works

In the FB “TankSimu”, the filling or emptying of a tank is simulated, depending on
the flow rate and the valve position.

The block is run through once per second.

On the web page, you determine the flow rate via the variable “Web2Plc.flowrate”.
The tank level is increased or decreased with the flow rate when the FB
“TankSimu” is called up. The current fill level is stored in the PLC variable
“Web2Plc.tankLevel”.

The valve position is read and stored in the CPU in the PLC variable
“Web2Plc.statusValveCPU” via the two PLC variables “Web2Plc.openValve” and
“Web2Plc.closeValve”.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 17

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Dependent on the tank level, the following heights are displayed:

• Tank has been fully drained (TankLevelLack)

• Tank level is at minimum (TankLevelMinimum)

• Tank level is 50% (TankLevelMidth)

• Tank level is at maximum (TankLevelMaximum)

• Tank is overflowing (TankLevelOverflow)

With the variable “Web2Plc.alarmText”, the tank level is displayed in plain text. The
variable “Web2Plc.alarmColor” is used to display the plain text in color.
Enumerations or arrays (JavaScript) are used to display text and color.

StartStop status

The tank level is only changed and values are only entered into the ring buffer if
the “Web2Plc.startStop” bit is set.

Valve status

Via the “Web2Plc.statusValveCPU” bit, the most recently pressed button
(OpenValve or CloseValve) is saved.

Dependent on this bit, the tank is either emptied or filled.

Fill tank

The filling of the tank starts with a query to check if the tank is already full.

If the tank is not full, the tank level is increased with the flow rate. The tank level is
limited by the “Web2Plc.tankLevelOverflow” value.

Empty tank

The emptying of the tank is similar to the filling of the tank. The tank level is
reduced with the flow rate and is limited at 0.

AlarmText and AlarmColor status

Subsequently, the tank level is compared with the specifications for the limit values
of the tank level.

Depending on which level is reached, the values “0” to “5” are stored in the variable
“Web2Plc.alarmText”, and the values “0” to “3” are stored in the variable
“Web2Plc.alarmColor”. The values of the two variables are stored in HTML text or
colors as enumerations or arrays (JavaScript). This displays the level of the tank in
colored, plain text.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 18

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5.1.4 DataToString (FC24)

Functionality of the FC “DataToString”

In the function, the values of several variables are combined into data strings using
the functions “WebStringAppend_xxx”. For each HTML file, one or, in the case of
larger amounts of data, several data strings are generated. After reading the values
in the web page, they are made available as an array via JavaScript (see Chapter
5.3).

Note It is important that the data string is assembled in a temporary variable and then
copied to the variable responsible for the web page.

This ensures that the string is always completely assembled, since the web
server accesses the program asynchronously.

The function is only needed for the “Web page optimized” example.

Figure 5-5: Generation of the data string for Overview.html

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 19

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5.2 Functionality of the HTML File Without JavaScript

The following chapter explains each section of the HTML files in the Web Page
Standard folder.

5.2.1 AWP Commands

AWP commands are inserted as HTML comments in HTML files. AWP commands
can be located at any position in the HTML file. However, for reasons of clarity, it is
appropriate to list the central AWP commands at the beginning of the HTML file

Table 5-1: AWB commands used

Function Presentation

Reading PLC
variables

:=<Varname>:

Writing PLC
variables

<!-- AWP_In_Variable Name='<Varname1>' -->

Defining Enum
types

<!-- AWP_Enum_Def Name='<Name Enum-Typ>'

Values='0:"<Text_1>",1:"<Text_2>",...,x:"<Text_y>"'

-->

Assigning Enum
types to variables

<!-- AWP_Enum_Ref Name='<Varname>'

Enum='<Name Enum-Typ>' -->

5.2.2 Outputting CPU Variables

Variables of the CPU are represented by the symbol name.

Figure 5-6 Display of variables in the HTML file

Instead of “:="Web2Plc".tankLevel:”, the web page displays the current value from
the CPU.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 20

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5.2.3 Outputting Texts via Enumerations

Using enumerations, texts and colors are assigned to the individual values of a
CPU variable.

Defining Enum types in an HTML file

In the HTML file, one Enum type each has been defined for the alarm text and the
text color.

Figure 5-7: Defining Enum types in an HTML file

Assigning Enum types to variables in an HTML file

In the HTML file, the “AlarmColor” Enum type is assigned to the
“Web2Plc.alarmColor” variable, and the “AlarmText” Enum type is assigned to the
“Web2Plc.alarmText” variable.

Figure 5-8: Assigning Enum types to variables in an HTML file

Instead of the values of “:="Web2Plc".alarmText:” and “:="Web2Plc".alarmColor:”,
the texts previously assigned in an HTML are output in the assigned colors.

5.2.4 Setting Variables in the CPU with Value and Button

Identifying PLC variables as “AWP_In_Variable” in an HTML file

All variables transferred to the CPU must be identified as AWP_In_Variable.

Figure 5-9: Designating PLC variables as “AWP_In_Variable” in an HTML file

Note Keep in mind that the quotation marks are nested. The DB name is written within
quotation marks and framed by a single quotation mark together with the variable
name.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 21

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Transferring PLC variables to an HTML file

To transfer variables to the CPU via the web page, you may use forms.

Figure 5-10: Transferring PLC variables

When the button “Set a new Flowrate” of type “submit” is pressed, the data is
transferred to the CPU.

5.2.5 Setting Variables in the CPU via Button Only

Identifying PLC variables as “AWP_In_Variable” in an HTML file

All variables transferred to the CPU must be identified as AWP_In_Variable.

Figure 5-11: Designating PLC variables as “AWP_In_Variable” in an HTML file

Transferring PLC variables to an HTML file

To assign a predefined value to variables in the CPU, use a form, the “POST”
method, and a hidden value.

Figure 5-12 Setting variables with buttons in HTML

The form is called with the post method. No specification is necessary for action,
because the current page is called by default.

Pressing the “OpenValve” button with input type=“hidden” assigns the value 1 to
the “Web2Plc.openValve” variable and the value 0 to the “Web2Plc.closeValve”
variable. Then the values of the variables are sent to the web server of the CPU.

Clicking the “CloseValve” button with input type=“hidden” assigns the 0 value to the
“Web2Plc.openValve” variable and the 1 value to the “Web2Plc.closeValve”
variable. Then the values of the variables are sent to the web server of the CPU.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 22

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5.3 Functionality of the HTML File with JavaScript

The following chapter explains the individual sections of the HTML files and the
associated JavaScript files in the “WebpageOptimized” folder.

In this example, data is combined into strings for a higher data transfer
performance with the FC “DataToString” (see 5.1.4). These strings are transferred
to the web browser and split into individual data again using JavaScript. The JSON
file contains the information on how to interpret the data in the string.

To display a web page, e.g. the Overview Page, the following files are required:

• OverviewOpti.html

• OverviewOpti.js

• OverviewOpti.json

• siemens_Stylesheet.css

• bootstrap.min.css

All web pages additionally use the Siemens library “S7_framework.js” and the
generally accessible library “jquery-2.2.0.min.js”.

Note You can find more information about the optimized data transfer with the
Siemens library “S7_framework.js” in the second application example “Examples
of the SIMATIC S7 1200/S7 1500 Web Server” in Chapter 18 “High-performance
Communication via String” on the same article page.

5.3.1 Outputting CPU Variables

HTML file

In this example, the variables of the CPU are not directly addressed in the HTML
file. Instead, an “id” is assigned to the output field.

Figure 5-13: Assign an “id” to an output field in the HTML file

JSON file

The JSON file contains the variables to be read and information on how to interpret
the values it contains. The data string is generated with FC “DataToString”.

Figure 5-14: Variable to be read with specification of length and type of the contained values

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 23

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The following assignments apply to the codes used in the JSON file:

Table 5-2: Interpretation of the codes in the “len” line

len Data type Length

1 BOOL 1 bit

2 BYTE 8 bits

4 INT, WORD 16 bits

8 DINT, DWORD, REAL 32 bits

16 LINT, LWORD, LREAL 64 bit

Table 5-3: Interpretation of the codes in the “type” line

type Data type

0 BOOL

1 UINT

2 INT, DINT

3 REAL

4 LREAL

5 STRING

Note To ensure a correct assignment of the values from the data string, the entries
under “len” and “type” must correspond to the PLC variables. Also note the order
of the PLC variables as they are combined in FC “DataToString”.

JavaScript file

In a JavaScript file, the variables (data strings) specified in the JSON file are read
out with the S7Framework function “readData”.

Figure 5-15: Reading the variables

...

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 24

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The values from the data strings are read one after the other and assigned to the
IDs of the HTML page in the “deployValues” function. The sequence of the values
corresponds to the sequence in the user program.

Figure 5-16: Assigning the values of the variables to the IDs

The S7Framework function “readData” is called again at the end of the
“deployValues” function so that the values are read cyclically.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 25

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5.3.2 Outputting Colored Texts via Arrays

Arrays for text and colors are defined in a JavaScript file. The values of the
variables in the CPU are used as indices for the defined arrays.

Defining arrays in a JavaScript file

In JavaScript, one array was defined for each the alarm text and the text color.

Figure 5-17: Defining an array

Assigning variables to array indices in a JavaScript file

The values of the variables “Web2Plc.alarmText” and “Web2Plc.alarmColor”
correspond to the variables “values[9]” and “values[10]” in the JavaScript file. To
output the colored texts instead of the values, these variables are used in the
“deployValues” function as indices for the defined arrays.

Figure 5-18: Assign colored text to the “Alarm” ID

The text is assigned to the output field with the “Alarm” ID using the “html” function,
and the color of the text is assigned with the “css” function.

5.3.3 Outputting Graphics via Arrays

Arrays for graphics are defined in a JavaScript file. The values of the variables in
the CPU are used as indices for the defined arrays.

Defining an array in a JavaScript file

In JavaScript, an array has been defined for the valve graphics.

Figure 5-19: Defining an array

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 26

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Assigning the array index to variables in a JavaScript file

The state of the boolean variable “Web2Plc.statusValveCPU” corresponds to the
variable “values[0]” in the JavaScript file. Depending on the state of the variables,
the local variable “img” is set to the value “0” or “1”. To output the graphic instead
of the values, the variable “img” is used in the “deployValues” function as the index
for the defined array.

Figure 5-20: Assign a graphic to the “statusValveCPU” ID

The output field with the “statusValveCPU” ID is assigned the corresponding
graphic.

Note In addition to the possibility to read graphics from arrays, there is also the
possibility of “CSS Sprites”, but their definition would be too in-depth for this
example.

5.3.4 Setting Variables in the CPU with Value and Button

Identifying PLC variables as “AWP_In_Variable” in a JSON file

All variables transferred to the CPU must be identified as “AWP_In_Variable”.

Figure 5-21: PLC variables as “AWP_In_Variable”

Note Keep in mind that the quotation marks are nested. The DB name is written within
quotation marks and framed by a single quotation mark together with the variable
name.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 27

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Input field for variables in an HTML file

To enter variables via the web page, you may use forms. IDs are also used here
for the entries.

Figure 5-22: Input field for variables

When the “Set a new Flowrate” button of the “button” type is pressed, the following
JavaScript code is executed to write the value to the CPU.

Writing PLC variables with JavaScript

In the JavaScript file, the variable “flowrate” is assigned the value of the input field
with the “flowrate” ID. This value is checked to see if it is between 1 and 10. The
“data” variable is assigned a string consisting of the PLC variable name and the
input value. This string is transferred to the CPU with the S7Framework function
“writeData”.

Figure 5-23: Writing PLC variables

...

5.3.5 Setting Variables in the CPU via Button Only

Identifying PLC variables as “AWP_In_Variable” in a JSON file

All variables transferred to the CPU must be identified as “AWP_In_Variable”.

Figure 5-24: PLC variables as “AWP_In_Variable”

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 28

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Buttons in an HTML file

To set variables in the CPU only by means of buttons, you may use forms. IDs are
also used here for the entries.

Figure 5-25: Buttons in an HTML file

When the “OpenValve” button of the “button” type is pressed, the following
JavaScript code is executed to set the values to the CPU.

Writing PLC variables with JavaScript

In the JavaScript file, the “data” variable is assigned a string consisting of the PLC
variable “Web2Plc.openValve” with the value “1” and the PLC variable
“Web2Plc.closeValve” with the value “0”. This string is transferred to the CPU with
the S7Framework function “writeData”.

Figure 5-26: Writing PLC variables

...

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 29

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5.4 How the HTML File Works with Web API (S7-1500)

The following chapter explains the individual sections of HTML files and the
associated JavaScript files of the “WebpageAPI” folder.

For displaying a web page (e.g. “OverviewApi.html”), the following additional files
are required:

• WebApi.js

• jquery-2.2.0.min.js

• toastr.min.js

• siemens_Stylesheet.css

• bootstrap.min.css

The CPU S7-1500 from firmware version V2.8 offers a web-based API (Web API)
as interface for reading and writing CPU data.

As RPC protocol, JSON-RPC V2.0 is based on HTTP. The Web API is accessible
via POST requests to the following URL:

https://[ip_address]/api/jsonrpc

Features and benefits of the Web API

• The Web API only supports the “HTTPS” transmission protocol.

• For the output of CPU data, AWP commands are no longer necessary.

• The web pages no longer need to be loaded onto the CPU and, as a result, are
independent of user-defined web pages. Additionally, synchronization between
the user program and the web server via the “www” command is no longer
necessary. This makes it possible to develop “offline” or to connect other
applications to the interface.
The web pages can also be loaded onto the CPU as user-defined web pages,
thus they are bound to the PLC and are also loaded with the project from the
TIA Portal into the PLC.

• The communication load between Server and Client is reduced compared to
the use of AWP commands, since smaller data packets are transferred with
JSON.

Note You can find further information on Web API in the function manual for “SIMATIC
S7-1500, SIMATIC Drive Controller, ET 200SP, ET 200pro Webserver”

https://support.industry.siemens.com/cs/ww/en/view/59193560/129802886283

5.4.1 Logging into Web API

Before data can be exchanged with the CPU, a new Web API session must be
opened. To do this, the user must log into the Web API with a user name and
password.

HTML file

The web pages (e.g. StartApi.html) consist of two areas: the login area
“plcLoginContainer” and the user area “plcTankContainer”.

The login area “plcLoginContainer” contains the login input fields “IP address”,
“Username”, and “Password”.

https://[ip_address]/api/jsonrpc
https://support.industry.siemens.com/cs/ww/en/view/59193560/129802886283

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 30

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Figure 5-27: “plcLoginContainer” area in the HTML file

By clicking the “Login” button, the JavaScript function “login()” is executed.

JavaScript file “WebApi.js”

The function “login()” is used to log into the Web API. It reads the login data of the
user from the web page and generates a request with the method “Api.Login”. The
request is transferred to the Server with the function “postJsonRPC()”. If
authentication is successful, a new Web API session is opened and the user
receives a token. The token identifies the user as successfully authenticated
against the API.

Figure 5-28: JavaScript function “login()” in the JavaScript file

After successful login, the “updateWebpage()” function hides the
“plcLoginContainer” login area and displays the “plcTankContainer” user area.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 31

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5.4.2 Transmitting the Token and IP Address When Changing Web Pages

So that the user does not have to login every time they change web pages, the
token of the Web API session and the IP address of the called web page are
passed as attributes in the “updateWebpage()” function.

Figure 5-29: Transmitting the token and IP address when changing web pages

When opening the called page, the function “getUrlParameter()” reads the
attributes and assigns them to the global variables “userToken” and “hostAddress”
for later use.

Figure 5-30: Read out of the transferred token and IP address

5.4.3 Outputting CPU Variables

HTML file

In this example, the variables of the CPU are not directly addressed in the HTML
file. Instead, an “id” is assigned to the output field.

Figure 5-31: Assign an “id” to an output field in the HTML file

JavaScript file

In the “updateWebpage()”, the functions for reading the values from the CPU are
called depending on the opened web page.

Figure 5-32: Calling the function “readValuesOverview()” to read the variables

The function “readValuesOverview()” is used to read the variables from the CPU
for the “OverviewApi.html” web page. To read variables, a request is created with
the name of the variable and the “PlcProgram.Read” method. The request is
transferred to the Server with the function “postJsonRPC()”. The Server returns a
response that contains the values of the variables as an array. The values are read
from the response one by one with the JavaScript function “JSON.parse()” and
assigned to the IDs of the HTML page. The order of the values corresponds to the
order of the request.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 32

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The following Figure shows only a part of the function “readValuesOverview()”. For
the sake of clarity, only the reading of the variable “Web2Plc.tankLevel” is shown.

Figure 5-33: Reading the variable “Web2Plc.tankLevel”

So that the values are read cyclically, the function “readValuesOverview()” is called
again at the end.

5.4.4 Outputting Colored Texts via Arrays

Arrays for text and colors are defined in a JavaScript file. The values of the
variables in the CPU are used as indices for the defined arrays.

Defining arrays in a JavaScript file

In JavaScript, one array each for the alarm text and the text color was defined.

Figure 5-34: Defining an array

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 33

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Assigning variables to array indices in a JavaScript file

The values of the variables “Web2Plc.alarmText” and “Web2Plc.alarmColor” are
read with the function “readValuesOverview()” and assigned to the variables
“alarmText” and “alarmColor”. To output the colored texts instead of the values,
these variables are used as indices for the defined arrays.

Figure 5-35: Assign colored text to the “Alarm” ID

The text is assigned to the output field with the “Alarm” ID using the “html” function,
and the color of the text is assigned with the “css” function.

5.4.5 Outputting Graphics via Arrays

Arrays for graphics are defined in a JavaScript file. The values of the variables in
the CPU are used as indices for the defined arrays.

Defining an array in a JavaScript file

In JavaScript, an array has been defined for the valve graphics.

Figure 5-36: Defining an array

Assigning the array index to variables in a JavaScript file

The state of the boolean variable “Web2Plc.statusValveCPU” is assigned to the
variable “statusValveCPU1” in the JavaScript file. Depending on the state of the
variables, the local variable “img” is set to the value “0” or “1”. To output the graphic
instead of the values, the variable “img” in the function “readValuesOverview()” is
used as index for the defined array.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 34

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Figure 5-37: Assign a graphic to the “statusValveCPU” ID

The output field with the “statusValveCPU” ID is assigned the corresponding
graphic.

Note In addition to the possibility to read graphics from arrays, there is also the
possibility of “CSS Sprites”, but their definition would be too in-depth for this
example.

5.4.6 Setting Variables in the CPU with Value and Button

Input field for variables in an HTML file

To enter variables via the web page, you may use forms. IDs are also used here
for the entries.

Figure 5-38: Input field for variables in an HTML file

When the “Set a new Flowrate” button of the “button” type is pressed, the following
JavaScript code is executed to write the value to the CPU.

Writing PLC variables with Web API

In the JavaScript file, the variable “flowrate” is assigned the value of the input field
with the “flowrate” ID. This value is checked to see if it is between 1 and 10. If this
is the case, the “writeFlowrate()” function is executed.

Figure 5-39: “flowrateButton” event handling

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 35

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The function “writeFlowrate()” is used to write the variable “flowrate”. To write the
variables, a request is created with the name of the PLC variable, the value, and
the “PlcProgram.Write” method. The request is transferred to the Server with the
function “postJsonRPC()”.

Figure 5-40: Writing PLC variables with Web API

5.4.7 Setting Variables in the CPU via Button Only

Buttons in an HTML file

To set variables in the CPU only by means of buttons, you may use forms. IDs are
also used here for the entries.

Figure 5-41: Buttons in an HTML file

When the “OpenValve” button of the “button” type is pressed, the following
JavaScript function is executed to set the values in the CPU.

Writing PLC variables with Web API

In JavaScript, clicking the “OpenValve” button executes the “writeOpenValve()”
function.

Figure 5-42: “OpenValve” event handling

The function “writeOpenValve()” sets the PLC variable “Web2Plc.openValve” to the
value “true” and the PLC variable “Web2Plc.closeValve” to the value “false”. A
request with the method “PlcProgram.Write” is created for writing the two variables.
The request is transferred to the Server with the function “postJsonRPC()”.

5 Function Mechanisms of this Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 36

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Figure 5-43: Writing PLC variables with Web API

6 Project Planning and Configuration

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 37

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

6 Project Planning and Configuration
This chapter contains all information on how you can create and operate a web
page for a CPU with PN interface for yourself.

The CPU 1511-1 PN is used as an example in this chapter. All steps are illustrated
using the finished application example.

If you only want to put the finished application example into operation, please
continue reading in Chapter 7.

6.1 Procedure for Creating a Web Page

The configuration and settings in STEP 7 and the writing of the HTML file are
closely linked. The following procedure is recommendable for that:

1. Configuring the Hardware

2. Creating the Variables in the S7 Program

3. Creating the HTML Files

4. Configuring Web Server Settings and Generating Data Blocks

5. Creating, Compiling, and Loading the S7 Program

6.2 Configuring the Hardware

1. Start the TIA Portal and select “Project > New…” to create a new project with
the name “Webserver_S7_1500” or “Webserver_S7_1200”, for example.

2. Add a S7-1500 or S7-1200 station via “Add new device > CPU > SIMATIC S7-
1500/1200”

The Device View of the CPU opens.

3. Click “Add new subnet” in the properties of the Ethernet interface.

4. Assign the IP address 192.168.0.1 of the CPU to the Ethernet interface. Via
this IP address, you may later use the web browser to access the web page of
the CPU.

Figure 6-1

6 Project Planning and Configuration

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 38

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The following steps are optional for added security when using a
SIMATIC S7-1500 CPU and are not part of the TIA Portal project.

1. Insert the module (“Communication modules > PROFINET/Ethernet > CP
1543-1 > 6GK7 543 1AX00 0XE0”) from the hardware catalog.

2. Click “Add new subnet” in the properties of the CP Ethernet interface.

3. Assign the IP address “192.168.80.1” of the CP to the Ethernet interface. Via
this IP address, you may also later access the web page of the CPU with your
web browser.

Figure 6-2

4. Click “Web server access” in the properties of the CP Ethernet interface.

Enable “Enable Web server for the IP address of this interface”

Figure 6-3

5. Click “Security” in the properties of the CP.

Click the green arrow to open the project’s security settings.

Configuring the “Security” is only possible after a user with the appropriate
configuration rights has logged in.

6 Project Planning and Configuration

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 39

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Figure 6-4

6. Click “Protect this project”.

Figure 6-5

7. Enter the following login data and confirm with “OK”:

User name: admin

Password: Security1

Caution: The project protection cannot be removed again.

Figure 6-6

8. Click “Security” in the properties of the CP and enable “Activate security
features”.

Figure 6-7

6 Project Planning and Configuration

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 40

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

9. Open the “Security” area and select “Firewall”.

Enable the following:

– “Activate firewall”

– “Allow HTTP”

– “Allow HTTPS”

Figure 6-8

6.3 Creating Variables in the Variable Table or DB

Create a data block (DB) or a variable table and insert the desired variables.

The variables of this application example are described in Chapter 5.1.

6.4 Creating the HTML files

To create the HTML file, you need the list of variables from Chapter 5.1 and an
appropriate editor.

There are convenient editors such as Microsoft Expression Web, which
automatically create tags or mark color-correct entries during creation, or simple
editors such as Notepad++.

Create the HTML files with an editor. Save the HTML files with the required
images, style sheets, and scripts in the “\UserFiles\Webpages” directory.

You can find detailed information on creating the HTML file in Chapters 5.2, 5.3,
and 5.4.

6 Project Planning and Configuration

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 41

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

6.5 Web Server Settings and Generating Data Blocks

1. Click “Web server” in the properties of the CPU.

2. Enable “Activate Web server on this module” and confirm the security warning.

3. The “Permit access only with HTTPS” option is enabled by default. If you do
not want to allow secure access to the default Web pages, uncheck the check
box.

4. Check whether “Enable automatic update” is enabled.

Figure 6-9

5. Give all rights to the user “Everybody”.
Alternatively, you can create your own user with a password.

Figure 6-10

6 Project Planning and Configuration

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 42

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

6. Specify the directory of your HTML files and select a start HTML page from the
directory. Assign an application name (for example, “OwnWebsites”).

Note The web pages are stored in the project directory under the “UserFiles” folder
and are thus bound to the TIA Portal project.

If you only want to use one of the three examples, you can also select
“.\UserFiles\Webpages\WebpageOptimized” as the HTML directory and
“StartOpti.html” as the start HTML page.

7. Under “Files with dynamic content:”, add the extension “.json”.

8. Generate the Web_Control_DB (default: DB333) and the Fragment_DBs
(default: from DB334) by clicking “Generate blocks”.

Figure 6-11

Note STEP 7 verifies the project with regard to the tags, loads the complementary
files, such as the enumerations or images, reads in the variables of the HTML
file, verifies the fragments, and writes all data in DB333 and from DB334.

The status of the generation is displayed in an independent window or in the
Inspector window under info.

9. Enable access to the web server for the required interfaces.

Figure 6-12

The CP is not configured in the application example.

6 Project Planning and Configuration

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 43

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

6.6 Creating, Compiling, and Loading the S7 Program

In the Appendix of this article, you can find an example S7 program. When creating
your own S7 program, you must pay attention to the following points:

• Call the “WWW” (SFC99) command. The “WWW” command initializes the web
server of the CPU. With the cyclic calling of the “WWW” command, you ensure
that changed variables of the CPU can be displayed on the web page.
The cyclic calling of the “WWW” command is done in OB1.

• Specify the number of the Web Control DB (for example, 333) in the input
parameter CTRL_DB of the “WWW” command.

1. Compile the project by right-clicking the CPU and choose “Compile > Hardware
and software (only changes)”.

2. Download the project onto the CPU. To do this, right-click the CPU and choose
“Download to device > Hardware and software (only changes)”.

If necessary, set your PG/PC interface in the dialog window:

Select the CPU and then click “Load”.

Note If you want to use another CPU, you may change the CPU under “Devices &
Networks”.

7 Installation

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 44

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

7 Installation

7.1 Installing Hardware and Software

Hardware installation

The following figure shows the hardware setup of the application example.

The PC with the web browser must be connected to the CPU via Industrial
Ethernet, e.g.

• directly at the PN interface of the CPU.

• directly at communication module CP 1543-1.
(The CP is not configured in the application example)

• via a switch.

Figure 7-1: Hardware setup of the application example

PROFINET

Industrial Ethernet

CPU 1511-1 PN/DP

SIMATIC STEP 7

HTML-Editor

Browser

Note Please observe the installation and connection guidelines from the
corresponding manuals.

Installing the software

1. Install SIMATIC STEP 7 (TIA Portal).

2. Install a web page creation tool, such as Notepad++, on the PC that you want
to use to create the web page.

3. Install a web browser such as Google Chrome on the PC with which you want
to access the web page of the CPU.

7 Installation

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 45

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

7.2 Installation of the Application Example

To put the application example into operation, proceed as follows:

1. Unzip the file
“68011496_S7-1200_1500_Webserver_CODE_v40.zip”
into your project directory.

2. Start SIMATIC STEP 7 (TIA PORTAL).

3. Switch to the Device View.

4. If you are using a different CPU, change the device.

5. In the CPU properties, assign the IP address of your CPU to the Ethernet
interface. (see Chapter 6.2)

6. Select the S7-1500 and load the entire project onto the CPU.

7. Start a web browser and access the web page of your CPU via the IP address.
(see Chapter 8)

8 Operating the Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 46

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

8 Operating the Application Example

8.1 Opening User-Defined Pages

Open the custom page as follows:

1. Start a web browser, such as Google Chrome.
For the address, enter the IP address of the CPU, e.g. https://192.168.0.1 or
the CP, https://192.168.80.1

The CPU’s intro web page opens. Click “ENTER”.

Figure 8-1

2. Click “User-defined pages”.

Figure 8-2

8 Operating the Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 47

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

3. To start the example, click “Homepage of the application OwnWebsites:”.

The “Startpage” web page opens.

Figure 8-3

4. On the “Startpage” web page, you can choose between the different examples
in the navigation bar:

– Web page standard: HTML without JavaScript

– Web page optimized: HTML with JavaScript

– Web API (S7-1500): HTML with Web API and JavaScript

Figure 8-4

8 Operating the Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 48

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

8.2 Operating the “Web Page Standard”

The “Web page standard” example is operated as follows:

1. The “Start” (“Plant Status”) web page has the following functions:

– Clicking the “Start” button starts the application in the CPU.

– By clicking “Stop”, the application is stopped.

– The “Reset” button resets the application to its original state.

– The operating status of the application is indicated by the LED
(red: off; green: on).

– You may change the flow rate with the arrow keys in the input field or by
entering a value and sending it to the CPU via the button “Set a new
Flowrate”. The permissible range is between 1 and 10. A flow rate of 1 is
preset in the S7 program.

– In the “Filling Level” area, the “Tank Level” is displayed as a percentage.

– Via the links on the navigation bar, you can switch between the web pages.

Figure 8-5

The web page is automatically updated after five seconds.

Note During the update of the web page, inputs (e.g. “Start”) are not transferred to the
CPU. This also applies to the following web pages of this example.

8 Operating the Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 49

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

2. The “Overview” (“Overview Tank”) web page has the following functions:

– The fill level is displayed graphically in the tank.

– In the “Data Current Value “ section, the “Flow Rate”, the “Tank Level”, and
a colored message text is displayed. The colored message text depends
on the current fill level.

– The limit values of the filling level are displayed in the “Measurement Unit”
area.

– Clicking the “Start” button starts the application in the CPU.

– Click “Stop” to stop the application and close the valve.

– Click the “OpenValve” button to open the valve. To do this, the application
must be started. The valve changes in color from “red” to “green”. The tank
is emptied.

– Click the “CloseValve” button to close the valve. The valve changes in
color from “green” to “red”. The tank is refilled.

– Via the links on the navigation bar, you can switch between the web pages.

Figure 8-6

The web page is automatically updated after two seconds.

8 Operating the Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 50

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

3. The web page “Data” has the following functions:

– The last 20 value pairs for “Tank Level” and timestamp are output in the
table.

– Clicking the “Start” button starts the application in the CPU.

– By clicking “Stop”, the application is stopped.

– Via the links on the navigation bar, you can switch between the web pages.

Figure 8-7

The web page is automatically updated after two seconds.

Click the “Start page” link to return to the Start Page.

4. In SIMATIC STEP 7 (TIA Portal), you can also monitor changes to variables in
the “Web2Plc” DB by clicking “Monitor all”.

Figure 8-8

8 Operating the Application Example

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 51

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

8.3 Operating the “Web Page Optimized”

In this example, the entire web page is not updated, but only the values of the
displayed variables.

The operation of the “Web page optimized” example differs from the operation of
the “Web page standard” web pages only in the input of the flow rate. Here, the
value cannot be changed with the arrow keys in the input field.

8.4 Operating “Web API (S7-1500)”

This example also does not update the entire web page, but only the values of the
displayed variables.

Operating the “Web API (S7-1500)” example differs from the operation of the “Web
page standard” web pages when entering the flow rate. Here, the value cannot be
changed with the arrow keys in the input field.

In addition, the user must first open a new Web API session by logging in with their
user name and password. To open a Web API session, log in with the following
login data:

• IP address: 192.168.0.1

• Username: Everybody

• Password: without

Then click the “Login” button.

Figure 8-9

After successful login, the “StartAPI” web pages are opened.

Note The web pages “Web API (S7-1500)” do not have to be loaded onto the CPU as
user defined web pages. The web pages can also be opened directly by double-
clicking the HTML file, e.g. “StartAPI.html” in Windows Explorer.

9 Appendix

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 52

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

9 Appendix

9.1 Service and support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire
service and support know-how and portfolio.

The Industry Online Support is the central address for information about our
products, solutions and services.

Product information, manuals, downloads, FAQs, application examples and videos
– all information is accessible with just a few mouse clicks:
https://support.industry.siemens.com

Technical Support

The Technical Support of Siemens Industry provides you fast and competent
support regarding all technical queries with numerous tailor-made offers
– ranging from basic support to individual support contracts. Please send queries
to Technical Support via Web form:
www.siemens.com/industry/supportrequest

SITRAIN – Training for Industry

We support you with our globally available training courses for industry with
practical experience, innovative learning methods and a concept that’s tailored to
the customer’s specific needs.

For more information on our offered trainings and courses, as well as their
locations and dates, refer to our web page:
www.siemens.com/sitrain

Service offer

Our range of services includes the following:

• Plant data services

• Spare parts services

• Repair services

• On-site and maintenance services

• Retrofitting and modernization services

• Service programs and contracts

You can find detailed information on our range of services in the service catalog
web page:
https://support.industry.siemens.com/cs/sc

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry
Online Support" app. The app is available for Apple iOS, Android and Windows
Phone:
https://support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/
http://www.siemens.com/industry/supportrequest
http://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/sc
https://support.industry.siemens.com/cs/ww/en/sc/2067

9 Appendix

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 53

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

9.2 Links and literature

Table 9-1

No. Subject

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to the article page of the Application Example

https://support.industry.siemens.com/cs/ww/en/view/68011496

\3\ HTML5, JavaScript

http://www.w3schools.com/html/
http://www.w3schools.com/js/

\4\ SIMATIC S7 S7-1200 Programmable Controller

https://support.industry.siemens.com/cs/ww/en/view/109764129

\5\ S7-1500 web server function manual

https://support.industry.siemens.com/cs/ww/en/view/59193560

\6\ S7-1500 system manual

https://support.industry.siemens.com/cs/ww/en/view/59191792

\7\ Simple examples for the web server

https://support.industry.siemens.com/cs/ww/en/view/68011496

\8\ SIMATIC STEP 7 Basic/Professional V16 and SIMATIC WinCC V16 system manual

https://support.industry.siemens.com/cs/ww/en/view/109773506/119453612171

\9\ HTML and CSS, Practical Formulas for Beginners

Robert R. Agular

mitp

ISBN 978-3-8266-1779-9

\10\ HTML manual

Stefan Münz/Wolfgang Nefzger

Franzis Verlag (Publishing House)

ISBN 3-7723-6654-6

\11\ JavaScript and Ajax, the comprehensive manual

Christian Wenz

Galileo Press

ISBN 978-3-8362-1128-4

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/68011496
http://www.w3schools.com/html/
http://www.w3schools.com/js/
https://support.industry.siemens.com/cs/ww/en/view/109764129
https://support.industry.siemens.com/cs/ww/en/view/59193560
https://support.industry.siemens.com/cs/ww/en/view/59191792
https://support.industry.siemens.com/cs/ww/en/view/68011496
https://support.industry.siemens.com/cs/ww/en/view/109773506/119453612171

9 Appendix

Creating User-Defined Web Pages for S7-1200/S7-1500
Entry ID: 68011496, V4.0, 03/2020 54

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

9.3 Change documentation

Table 9-2

Version Date Change

V1.0 02/2014 First edition

V2.0 06/2015 The applications “Creating and Using User-Defined Web
Pages for S7-1200” and “Creating and Using User-Defined
Web Pages for S7-1500” were merged.

V2.1 10/2015 Correction

V2.2 10/2016 The application example is programmed exclusively with
HTML5.

V3.0 09/2019 Update TIA Portal V15.1 (v3.0.1: project user added)

V4.0 03/2020 Extension of the application example with

• HTML pages with JavaScript

• HTML pages with Web API and JavaScript

	Creating User-Defined Web Pages for S7-1200/S7-1500
	Legal information
	1 Preface
	2 Automation Task
	3 Automation Solution
	3.1 Overview of the Overall Solution
	3.2 Advantages and Possible Uses of Web Server Applications
	3.3 Creating User-Defined Web Pages
	3.4 Structure of the Application Example
	3.5 Hardware and Software Components Used

	4 Fundamentals of Standard Web Pages
	5 Function Mechanisms of this Application Example
	5.1 Functional Principle of the S7 Program
	5.1.1 Startup (OB100)
	5.1.2 Main (OB1)
	5.1.3 TankSimu (FB1)
	5.1.4 DataToString (FC24)

	5.2 Functionality of the HTML File Without JavaScript
	5.2.1 AWP Commands
	5.2.2 Outputting CPU Variables
	5.2.3 Outputting Texts via Enumerations
	5.2.4 Setting Variables in the CPU with Value and Button
	5.2.5 Setting Variables in the CPU via Button Only

	5.3 Functionality of the HTML File with JavaScript
	5.3.1 Outputting CPU Variables
	5.3.2 Outputting Colored Texts via Arrays
	5.3.3 Outputting Graphics via Arrays
	5.3.4 Setting Variables in the CPU with Value and Button
	5.3.5 Setting Variables in the CPU via Button Only

	5.4 How the HTML File Works with Web API (S7-1500)
	5.4.1 Logging into Web API
	5.4.2 Transmitting the Token and IP Address When Changing Web Pages
	5.4.3 Outputting CPU Variables
	5.4.4 Outputting Colored Texts via Arrays
	5.4.5 Outputting Graphics via Arrays
	5.4.6 Setting Variables in the CPU with Value and Button
	5.4.7 Setting Variables in the CPU via Button Only

	6 Project Planning and Configuration
	6.1 Procedure for Creating a Web Page
	6.2 Configuring the Hardware
	6.3 Creating Variables in the Variable Table or DB
	6.4 Creating the HTML files
	6.5 Web Server Settings and Generating Data Blocks
	6.6 Creating, Compiling, and Loading the S7 Program

	7 Installation
	7.1 Installing Hardware and Software
	7.2 Installation of the Application Example

	8 Operating the Application Example
	8.1 Opening User-Defined Pages
	8.2 Operating the “Web Page Standard”
	8.3 Operating the “Web Page Optimized”
	8.4 Operating “Web API (S7-1500)”

	9 Appendix
	9.1 Service and support
	9.2 Links and literature
	9.3 Change documentation

